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A B S T R A C T 

With the advancement of technology, machine learning-based analytical methods have pervaded nearly every discipline in modern 

studies. Particularly, a number of methods have been employed to estimate the redshift of gamma-ray loud active galactic nuclei 
(AGN), which are a class of supermassive black hole systems known for their intense multi-wavelength emissions and violent 
variability. Determining the redshifts of AGNs is essential for understanding their distances, which, in turn, sheds light on our 
current understanding of the structure of the nearby uni verse. Ho we ver , the task in volves a number of challenges, such as the 
need for meticulous follow-up observations across multiple wavelengths and astronomical facilities. In this study, we employ 

a simple yet ef fecti ve deep learning model with a single hidden layer having 64 neurons and a dropout of 0.25 in the hidden 

layer on a sample of AGNs with known redshifts from the latest A GN catalogue, 4LA C-DR3, obtained from Fermi-LAT. We 
utilized their spectral, spatial, and temporal properties to robustly predict the redshifts of AGNs as well quantify their associated 

uncertainties by modifying the model using two different variational inference methods. We achieve a correlation coefficient of 
0.784 on the test set from the frequentist model and 0.777 and 0.778 from both the variants of variational inference, and, when 

used to make predictions on the samples with unknown redshifts, we achieve mean predictions of 0.421, 0.415, and 0.393, with 

standard deviations of 0.258, 0.246, and 0.207 from the models, respectively. 

Key words: methods: statistical – galaxies: active – galaxies: distances and redshifts – g amma-rays: g alaxies – gamma-rays: 
general. 
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 I N T RO D U C T I O N  

edshift, denoted as ‘ z’, is a measure of the displacement of spectral
ines towards longer wavelengths in the electromagnetic spectrum.
his phenomenon arises due to the expansion of the Universe,
tretching the wavelength of light emitted by distant celestial objects.
edshift estimation plays a fundamental role in understanding the
roperties of these objects, including their distance, cosmological
volution, and the nature of the Universe itself. In the realm of astro-
hysics, redshift estimation traditionally relies on spectroscopic mea-
urements, where the light emitted by celestial objects is dispersed
nto its constituent wav elengths, rev ealing characteristic absorption
r emission features. Ho we ver, spectroscopic observ ations are often
onstrained by limited observ ational time, expensi ve resources, and
he technical limitations of spectrographs. Consequently, obtaining
pectroscopic redshift measurements for a large number of objects,
s required by comprehensive surveys, becomes challenging and
mpractical. 

The Fermi Gamma-ray Space Telescope (Fermi-LAT) has rev-
lutionized the study of high-energy gamma-ray sources and con-
ributed significantly to our understanding of the Universe. The
 E-mail: sarveshgharat19@gmail.com 
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ermi-LAT observatory observes celestial objects in gamma-ray
avelengths. Ho we ver, ef ficiently extracting redshift information

olely from gamma-ray observations poses a challenge as these
bserv ations are de void of any spectral line, besides that of the
11 keV feature Skinner ( 2010 ). Therefore, the sole viable approach
o gauging the distance involves linking the gamma-ray emitter with
 recognized source that exhibits absorption or emission lines in
ther wavelengths, thereby enabling the calculation of redshift. The
ajority of discrete sources detected by Fermi/LAT are blazars,
hich consist of flat-spectrum radio quasars (FSRQs) exhibiting
istinct optical emission lines o v er a broad-band continuum, and
L Lacs (BLLs), characterized by weak or absent emission line

ignatures (see Bhatta & Dhital 2020 , and references therein). This
ndicates that while it may be relatively easier to estimate the redshifts
f FSRQs, the redshift e v aluation for BL Lacs is a complex and
ften computationally e xpensiv e task as it necessitates e xtensiv e
ptical spectroscopic observations along with comprehensive multi-
avelength observations involving diverse astronomical facilities. 
To address these challenges, astronomers have turned to ML

nd DL techniques Dainotti et al. ( 2021 ); Narendra et al. ( 2022 );
oronado-Bl ́azquez ( 2023 ), which have demonstrated remarkable

uccess. The study done by Dainotti et al. ( 2021 ) is one of the
nitial works in estimating the redshift of γ -Ray loud AGNs. The
uthors make use of an ensemble-based approach that combines
© The Author(s) 2023. 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Table 1. Classwise distribution of the data considered for this study. 

Known redshift Unknown redshift Total 

BLL 738 433 1171 
BCU 59 459 518 
FSRQ 390 0 390 
RDG 26 4 30 
NLSY1 5 0 5 
AGN 3 0 3 
CSS 3 0 3 
Total 1224 896 2120 

Table 2. Neural Network Architectures: dropout of 0.25 between the hidden 
and output layers is common for each model. 

Model Hidden layer Output layer Estimator 

Frequentist Dense (64 
neurons) 

Dense (1 neuron) –

Variational 
inference 

Dense (64 
neurons) 

DenseFlipout (1 
neuron) 

Flipout 

Variational 
inference 

Dense (64 
neurons) 

Dense 
Reparametrization 
(1 neuron) 

Reparametrization 
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tandard regression algorithms such as Random Forest, XG Boost, 
ig LASSO, and Bayes GLM to estimate the redshift of the 
orresponding input target. The authors make use of a 10 cross-fold
alidation technique iterated o v er 10 times to report a correlation
Figure 1. Plots for Epochs versus Loss (MAE) and RM
oefficient ( r ) ranging from 0.704 to 0.718. Moreo v er, the y also
eported a root-mean-squared error (RMSE) ranging from 0.432 to 
.438. 
Narendra et al. ( 2022 ) is an advancement of Dainotti et al.

 2021 ). The authors employed a similar ensemble-based technique 
s observed in Dainotti et al. ( 2021 ), ho we ver, the only difference
esides an increase in the data points and the feature vector is the
hoice of machine learning models. The authors report an RMSE 

alue of 0.212 when the sample size is 111 and 0.458 when the
ample size is 1112. As RMSE is inversely proportional to the number 
f samples used during e v aluation, it cannot be considered the best
 v aluation metric to compare different algorithms unless the sample
ize is the same across the algorithms. Also, the authors report a
orrelation coefficient of r ≈0.74 in both of the aforementioned cases. 

In Coronado-Bl ́azquez ( 2023 ), the author makes use of the 4LAC
R3 catalogue, which is an updated version of the data used in
ainotti et al. ( 2021 ) and Narendra et al. ( 2022 ) with multiple

dditional features and a significant increase in the number of data
oints. To optimally use both the numerical as well as categorical
eatures, the author relies on the CatBoost algorithm, which is 
 boosted decision tree-based algorithm capable of dealing with 
he categorical data. The author employs a five-cross validation 
echnique to make ef fecti ve use of the limited data. The reported
RMSE’ and ‘ r ’ values in this study are 0.46 and 0.71, respectively.
imilar to Dainotti et al. ( 2021 ) and Narendra et al. ( 2022 ), the author
lso experiments with an ensembled approach having combined 
ight different algorithms; however, the performance of the CatBoost 
MNRAS 527, 6198–6210 (2024) 
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Figure 2. Plots for Epochs versus Loss (MAE) and RMSE for variational inference (reparametrization estimator). 

Table 3. Performance Analysis: RMSE and correlation coefficient comparison between previous approaches and our proposed model. We make use of the 
mean predictions for the bayesian models to calculate the required metric. 

Dainotti et al. 
( 2021 ) 

Narendra et al. 
( 2022 ) 

Coronado-Bl ́azquez 
( 2023 ) 

Frequentist 
algorithm 

Variational 
inference (Flipout) 

Variational inference 
(Reparametrization) 

RMSE 0.432–0.438 0.458 0.46 0.415 0.406 0.438 

Correlation 
Coefficient 

0.704–0.718 0.74 0.71 0.784 0.777 0.778 

Table 4. Assessing redshift predictions using variational inference: summary of true values, estimators, confidence intervals, and variance for a random set of 
samples. 

True value Estimator 68.2 per cent CI 95.4 per cent CI 99.7 per cent CI Variance 

0.1860 Reparametrized 0.1498–0.245 0.1022–0.2926 0.0546–0.3402 0.002 
Flipout 0.1539–0.2533 0.1041–0.3031 0.0543–0.3529 0.002 

0.2974 Reparametrized 0.3138–0.4124 0.2645–0.4617 0.2152–0.511 0.002 
Flipout 0.3173–0.4177 0.2671–0.4679 0.2169–0.5181 0.002 

0.4470 Reparametrized 0.2148–0.3588 0.1428–0.4308 0.0708–0.5028 0.005 
Flipout 0.3563–0.4699 0.2955–0.5267 0.2427–0.5835 0.003 

1.014 Reparametrized 0.7964–1.0154 0.6869–1.1249 0.5774–1.2344 0.011 
Flipout 0.7924–0.979 0.6991–1.0723 0.6058–1.1656 0.008 
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Figure 3. Scatter relation between the true value and the predicted mean value using variational inference (Flipout Estimator). The red diagonal represents a 
perfect prediction. 

Figure 4. Scatter relation between the true value and the predicted mean value using variational inference (reparameterization estimator). The red diagonal 
represents a perfect prediction. 
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odel is reported to be significantly better than what was observed 
n the ensembled algorithm. 

Considering the limited number of studies conducted on this 
opic, none of which account for the uncertainty of the predicted 
edshifts, in this manuscript, we introduce an algorithm that employs 
 multilayer perceptron with a single hidden layer as the foun-
ational model, which, when modified using variational inference 
llows us to not only quantify uncertainty but also augment our 
esults. 
p

 M E T H O D O L O G Y  

.1 Data collection and processing 

ince its launch in 2008, the Fermi Gamma-Ray Space Telescope’s 
nboard instrument called the LAT has been continuously monitoring 
he high-energy sky (Atwood et al. 2009 ). In this study, we utilize the
ermi fourth catalogue of active galactic nuclei (AGNs) data release 
 (4LAC-DR3; Ajello et al. ( 2022a; 2022b )). The catalogue com-
rises 3407 individual sources, of which 1806 sources have known 
MNRAS 527, 6198–6210 (2024) 
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Figure 5. Scatter relation between the true value and the predicted value using Frequentist model. The red diagonal represents a perfect prediction. 

Figure 6. Variational inference (flipout estimator) – comparison between predicted mean redshift and true redshift using Histograms. The distribution of the 
redshift values for both the known and predicted redshifts, disaggregated by the ‘CLASS’ feature, is shown. Here, only those classes with more than 50 samples 
are represented. 
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Figure 7. Variational inference (reparameterized estimator) – comparison between predicted mean redshift and true redshift using histograms. The distribution 
of the redshift values for both the known and predicted redshifts, disaggregated by the ‘CLASS’ feature, is shown. Here, only those classes with more than 50 
samples are represented. 
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edshifts. Each source is characterized by a set of 41 different features
ith randomly missing values reported in this catalogue. Following 
oronado-Bl ́azquez ( 2023 ), we shortlist a set of 24 features for our

tudy. Some of the features, such as ‘SED class’, ‘Highest energy’, 
nd ‘Unc LP beta’ have a number of missing v alues. After suf ficient
xperimentation with different imputing techniques, feature removal, 
nd data removal, we proceed with the removal of the data points
ith missing values for the ‘Highest energy’ and ‘Unc LP beta’ 

eatures. On the other hand, the missing values for the ‘SED class’
re imputed using the mode estimation technique or, most frequent 
ategorical value imputation Lin & Tsai ( 2020 ). To carry out the
mputation process, we make use of sklearn’s Pedregosa et al. ( 2011a )
impleImputer with appropriate arguments like setting strategy to 
ost frequent. This leaves us with 1224 data points (for detailed 

ata distribution refer to Table 1 ) for our study with 90 per cent of
he data used for training and 10 per cent of data used for validation
nd testing purposes equally divided among each other. It is crucial to
ote that the concept of the validation data split refers to the division
f data used for e v aluating and refining a deep learning model during
ts training process. This division serves as a means to optimize the
odel’s performance and make necessary adjustments. By subjecting 

he trained model to the validation set, we gain valuable insights into
ts ability to generalize on unseen data. The model’s performance 
n the validation set can be regarded as a reliable indicator of
ts performance on entirely new data at each training epoch. This
 v aluation helps in identifying potential issues, such as o v erfitting,
 M  
hich can significantly affect the model’s effectiveness in real-world 
pplications. It allows us to make unbiased estimations of critical 
yperparameters, such as the number of neurons in the hidden layer
r the dropout rate, essential for optimizing the model’s performance. 
he collected data consists of a number of numerical and categorical

eatures. To deal with categorical data, we convert them to an integer-
alued array using Sklearn’s ordinal encoder. Next, all the numeric 
ata is normalized using the StandardScaler provided by Sklearn 
edregosa et al. ( 2011b ); Buitinck et al. ( 2013 ). Prior to standard
caling, all numeric features except ‘Frac V ariability’, ‘GLA T’, 
GLON’, ‘LP Index’, ‘LP beta’, ‘PL Index’, ‘Unc Flux1000’, and 
Unc PL Index’ undergo log transformations. After pre-processing, 
e are left with a total of 1224 samples with known redshift values

nd 896 samples with unknown redshifts. Please refer Table 1 for
lass-wise distribution of the samples. The feature engineering and 
ata engineering and proposed algorithms are implemented using 
YTHON 3.7. The pandas library Wes McKinney ( 2010 ) is used to
ead the dataframes from the files and store them and once the input
eatures are identified, we store them using numpy Harris et al. ( 2020 )
rrays, in order to feed them into our TensorFlow Abadi et al. ( 2015 )
odels. 

.2 Model ar chitectur e and uncertainty quantification 

n this study, we propose a multilayer perception Baum ( 1988 );
urtagh ( 1991 ); Noriega ( 2005 ), with a single hidden layer having
MNRAS 527, 6198–6210 (2024) 
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Figure 8. Frequentist model – comparison between predicted mean redshift and true redshift using histograms. The distribution of the redshift values 
for both the known and predicted redshifts, disaggregated by the ‘CLASS’ feature, is shown. Here, only those classes with more than 50 samples are 
represented. 

6  

f  

s  

n  

d  

t  

t  

v  

c  

n  

w  

t  

t  

w  

(  

t  

w  

h  

l  

R  

t  

S  

o  

e  

b  

a  

i  

A  

i  

‘  

t  

u  

t
 

t  

p  

h  

d  

i  

a  

d
 

p  

d  

p  

i  

o  

m  

d  

p  

d  

p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stad3622/7445008 by Indian Institute of Technology - Bom

bay user on 05 D
ecem

ber 2023
4 neurons. A multilayer perceptron, often abbreviated as MLP, is a
eed-forw ard Neural Netw ork with atleast three layers including the
tandard input, hidden, and output layer. Every layer has multiple
odes/neurons in it, which along with the number of hidden layers
efine the complexity of the model. Though there are many standard
echniques to define the number of neurons in every hidden layer, in
his study due to the simplicity of our model, we come up with the
alue of 64 after sufficient experimentation. These MLPs are fully
onnected, implying that every node in layer ‘ i ’ connects to each
ode in the subsequent layer ‘ j ’ through a weight value denoted as
 ij . The learning process is facilitated by adjusting the values of

hese weights as the data is processed, guided by the error between
he MLP output and the target value. Further, to a v oid o v erfitting,
e introduce a dropout Sri v astav a et al. ( 2014 ); Srini v as & Babu

 2016 ); Cai et al. ( 2019 ) of 0.25 in the hidden layer. This ensures
hat, during training, at any point in time, a neuron will be inactive
ith a probability of 0.25. This prevents the network from relying too
eavily on specific neurons and encourages more robust, generalized
earning. Next, to ensure non-linearity within the model, we apply
eLU – a widely used acti v ation function Fukushima ( 1975 ). In

he output layer, we utilize the softplus acti v ation function Dubey,
ingh & Chaudhuri ( 2022 ), which is just a smooth continuous version
f ReLU. Placing an acti v ation function at the end of each layer
nsures that the layer’s output undergoes a non-linear transformation
efore being passed to the next layer. This is crucial in enabling the
lgorithm to learn and capture non-linear dependencies between the
NRAS 527, 6198–6210 (2024) 
nput and the output. For the loss function, we employ the ‘Mean
bsolute Error’ (MAE) Hodson ( 2022 ). This baseline model treats

ts parameters as point estimates and hence we refer to it as the
frequentist’ model. Moreo v er, to account for uncertainty, we employ
he method of variational inference to modify our frequestist model
sing two different estimators, as discussed below. A summary of
he architectures for the three models is listed in Table 2 . 

Variational inference is a technique that aims to approximate
he true but often intractable posterior distribution of the model’s
arameters (weights and biases) given the observed data Shrid-
ar, Laumann & Liwicki ( 2019 ); Jospin et al. ( 2022 ). Instead of
irectly calculating the posterior, which is either challenging or
mpossible in complex models, variational inference introduces
n approximating distribution (usually a known and tractable
istribution). 
To achieve this, a prior distribution is assigned to the model’s

arameters, representing our initial beliefs about their values. As
ata is observed, the prior is updated using Bayes’ rule to obtain the
osterior distribution. Ho we ver, directly calculating the posterior is
ntractable for many models, especially neural networks. Thus, an
ptimization problem is formulated: we seek the closest approxi-
ating posterior distribution (in terms of the Kullback–Leibler (KL)

ivergence) that can be efficiently computed Bishop ( 2006 ). Both the
rior and the approximating distributions are chosen as the Normal
istribution, due to its desirable properties, like being a conjugate
rior to itself. 
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Figure 9. Variational inference (flipout estimator) – comparison between known redshift samples and predictions on unknown redshift samples using histograms. 
The distribution of the redshift values for the predictions made on the unknown redshift samples, disaggregated by the ‘CLASS’ feature. Only classes with more 
than 50 samples are represented. 
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Unlike traditional neural networks that rely on point estimates, 
ariational inference provides a more meaningful measure of un- 
ertainty and captures the complexity of the posterior distribution 
hrough this probabilistic approach. We use TensorFlow Probability 
illon et al. ( 2017 ) and Keras Chollet et al. ( 2015 ) to implement

he proposed models. There are multiple methods to implement 
ariational inference using tensorflow probability; however, we 
roceed with the DenseFlipout and DenseReparamtrization layers. In 
oth of these methods, the layers implement the Bayesian variational 
nference counterpart to a Dense layer by drawing the parameter 
alues from distributions. An important difference between both of 
hese layers is that the flipout estimator uses roughly twice as many
oating point operations as the reparametrization estimator. (Refer 
en et al. ( 2018 ) and Kingma & Welling ( 2013 ) for more information

n both of these layers). 
To quantify uncertainty, each sample is e v aluated 1000 times, and

he uncertainty is captured using the variance of the predictions. 
he resulting mean from the 1000 iterations is considered as the 
rediction of the Bayesian model. Due to the Bayesian nature of
he variational inference algorithms, the output prediction at every 
teration is an independent and identically distributed Gaussian 
ample. Having set the output predictions to be normally distributed 
or a fixed data point, we then calculate the mean and standard
eviation of the predictions for each sample. As evident from the 
heory of Gaussian distributions, we then make use of the standard 
 σ rule to come up with a possible range of redshifts containing
he true value of the redshift with an associated confidence level. 
d  
lthough this rule comments on the confidence levels being, 68.2, 
5.4, and 99.7 per cent for 1, 2, and 3 standard deviations from the
ean, respectively, it is easy to generalize it for any range of values

epending upon the allowed tolerance. 

.3 Training and validation 

onsidering the computational requirement to train the algorithm, we 
ake use of Google Collaboratory, a cloud-based jupyter environ- 
ent for model training. An important aspect of any Machine or Deep 
earning algorithm is its reproducibility. To ensure this, we train our
lgorithms on a fixed random seed o v er a maximum of 2500 epochs,
nd include the data splits pertaining to the training, validation, and
esting sets in our GitHub repository. To reduce the computational 
 v erhead and a v oid o v erfitting, we introduce early stopping Caruana,
awrence & Giles ( 2001 ) with a validation patience of 100, and as
 result, the proposed variational inference models stop after 1170 th 

nd 390 th epoch, respectively, as shown in Figs 1 and 2 , respectively.
As evident from Fig. 2 , during the initial 100 epochs, the rate of

ecrease in ‘loss’ and ‘RMSE’ for both the training and validation
ata points is high. Ho we ver, at later stages, it tends to saturate. This
ndicates that there’s a very high probability of having no further
ecrease in the loss. Having said this, the use of early stopping
nsures that the algorithm stops its training once the rate of decrease
n the validation loss tends to zero. This helps in a v oiding unnecessary
omputations. Also, in Fig. 1 , we observe that at later stages there’s a
ecrease in training loss; on the other hand, the validation loss tends
MNRAS 527, 6198–6210 (2024) 
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Figure 10. Variational inference (reparameterized estimator) – comparison between known redshift samples and predictions on unknown redshift samples 
using histograms. The distribution of the redshift values for the predictions made on the unknown redshift samples, disaggregated by the ‘CLASS’ feature. Only 
classes with more than 50 samples are represented. 
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o saturate and even increases in further epochs. This behaviour
esults in o v erfitting of the algorithm, if not stopped at the correct
ime, and the introduction of early stopping ensures the same. 

To optimize the algorithm, we make use of ‘Adam’ Kingma &
a ( 2014 ), which is one of the widely used optimizers in the Deep
earning community with a learning rate of 10 −3 . One of the primary

easons for its popularity is that it incorporates momentum (for which
e use the default values defined in TensorFlow) and is a variant of

he AdaGrad optimizer, which facilitates quicker convergence. 

 RESULTS  A N D  DISCUSSION  

lazars emitting γ -rays with known redshifts significantly contribute
o our understanding of several fundamental aspects of cosmic
henomena. Determining their redshifts aids in constraining the
ature of the Extragalactic Background Light (e.g. Ackermann et al.
012a ; Dwek & Krennrich 2013 ; Acciari et al. 2019 ). Additionally,
hese blazars shed light on the structures of intergalactic magnetic
elds (e.g. Tavecchio et al. 2010 ; Finke et al. 2015 ; Aharonian et al.
023 ) and the Universe’s star formation history (Ackermann et al.
012b ; Rojas-Bra v o & Araya 2016 ; Fermi-LAT Collaboration et al.
018 ). Also, by computing the luminosity function, we can estimate
he evolution of blazars o v er cosmic time (Chiang et al. 1995 ; Ajello
t al. 2012 ). This, in turn, can lead to the constraining of fundamental
osmological parameters (Dom ́ınguez et al. 2019 ; Zeng & Yan 2019 ).

The study contributes by providing an algorithm that rigorously
stimates the possible range of redshifts with an associated con-
dence. To assess the ef fecti veness of our model, we conducted
NRAS 527, 6198–6210 (2024) 
 v aluations using entirely new and unseen data, referred to as the test
ata. Since our study focuses on a regression problem, we utilized
he ‘Root Mean Squared Error’ (RMSE) as one of our e v aluation

etrics. The Root Mean Squared Error (RMSE) calculates the square
oot of the average of the squared differences between predicted
alues and actual values in the test data. A lower RMSE generally
ndicates better model performance, as it signifies smaller prediction
rrors. Ho we ver, the RMSE v alue is influenced by the number of
amples. Therefore, we also utilized the ‘correlation coefficient’ to
 v aluate our model. The correlation coefficient measures the strength
nd direction of the linear relationship between two variables. A
igher correlation coefficient indicates a better alignment between
he predicted and actual values, demonstrating the model’s ability to
apture the underlying patterns in the data. Table 3 clearly shows that
ur proposed algorithm yields impro v ed results when compared to
xisting studies, with a maximal increase in the correlation coefficient
f around 0.07. 
Additionally, Table 4 presents a comparison between the actual

edshift values and the predicted range of redshifts at fixed confidence
evels for randomly selected data points from the test data set. The
able clearly demonstrates that in the majority of cases, the true
edshift value falls within the interval associated with a confidence
evel of 95.4 per cent. Although in Table 4, we focus on the
pecific confidence levels, the range can be easily calculated for
ifferent confidence levels based on a real multiple of the standard
eviation. 
Figs 3 , 4 , and 5 present scatter plots that showcase the relationship

etween predicted and true redshifts obtained from various models.
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Figure 11. Frequentist model – comparison between known redshift samples and predictions on unknown redshift samples using histograms. The distribution 
of the redshift values for the predictions made on the unknown redshift samples, disaggregated by the ‘CLASS’ feature. Only classes with more than 50 samples 
are represented. 

Table 5. Redshift prediction summary statistics. 

Method Known redshift samples Unknown redshift samples 
Mean prediction Range σ Mean prediction Range σ

Frequentist model 0.559 0.04–1.99 0.372 0.455 0.07–1.77 0.258 
Variational inference (flipout estimator) 0.581 0.027–2.11 0.382 0.415 0.0251–1.71 0.246 
Variational inference (reparameterization estimator) 0.526 0.0004–1.82 0.332 0.393 0.0089–1.47 0.207 
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hile it is evident that the predicted redshifts tend to be slightly
ower than the actual values in many instances (a trend also observed
n Coronado-Bl ́azquez ( 2023 ), albeit with more scattered points),
he incorporation of uncertainty and confidence levels addresses this 
ssue. By utilizing a 3 σ interval of the mean with a confidence level
f 99.7 per cent, the majority of true values fall within this range –
n analysis reveals that for all the samples with a known redshift,
he true value falls within the 99.7 per cent confidence interval for 63
er cent of the samples using each method of variational inference. 
his enables astronomers to make informed decisions regarding the 

eliability of the algorithm’s predictions, considering the desired 
onfidence level and width interval at an y giv en point. Figs 6 , 7 ,
nd 8 provide similar insights. Additionally, the figures highlight the 
lgorithm’s limitations in regressing lo wer redshifts. Ho we ver, due 
o the associated uncertainty and the range of predictions provided 
y variational inference, the lower redshifts are accounted for within 
he predicted range. This aspect of our proposed algorithm ensures 
hat the true value is captured with a sufficiently high probability, 
epending on the allowed confidence level. 
As illustrated in Figs 9 , 10 , and 11 , the predictions made on the
amples with an unknown redshift by the frequentist model, the 
ipout estimator model, and the reparamterization estimator model 
ollow distributions similar to that of the predictions made on the
nown redshift samples with mean values of 0.455, 0.415, and 0.393,
tandard deviations of 0.258, 0.246, and 0.207, and redshift values 
anging from 0.07–1.77, 0.0251–1.71, and 0.0089–1.47, respectively 
Table 5 ). 

Figs 12 and 13 display histograms corresponding to the data 
resented in Table 4 . As evident from the figures, the predicted
et of values for every redshift correspond to a Gaussian distribution,
hich confirms the inclination of the implemented algorithm with 

he theory and hence allows us to efficiently estimate the uncertainty
ssociated with the range of predictions. 

Also, as seen in Table 1 and Figs 9 , 10 , and 11 , the predicted
edshift class is mostly composed of BL Lacs and BCUs. These
esults are plausible because BL Lacs are strong gamma-ray emitters 
ith weak or no emission lines, which makes estimating their 

edshifts very difficult. Similarly, the BCUs are unclassified sources 
MNRAS 527, 6198–6210 (2024) 
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M

Figure 12. Evaluation of the uncertainty for variational inference using the flipout estimator. Redshift samples were e v aluated 1000 times, and the resulting 
distribution for some of the known values is shown here. The distribution was fitted with a Gaussian PDF, and the values within 1 σ , 1 σ–2 σ , and 2 σ–3 σ from 

the mean were colour-coded as cyan, green, and red, respectively. 
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hose classification is challenging, as optical spectra or MWL
bservations required for a robust classification are not available.
o we ver, se veral studies based on machine learning predict that the
ajority of these sources are likely to be BL Lacs (see e. g. Kang

t al. 2019 ; Agarwal 2023 ). 

 C O N C L U S I O N  

his study introduces a straightforward yet highly ef fecti ve al-
orithm for redshift estimation using solely gamma-ray observa-
NRAS 527, 6198–6210 (2024) 
ions.The proposed algorithm shows impro v ements o v er e xisting
ethods, achieving significantly low RMSE values of 0.415, 0.406,

nd 0.438 in its frequentist, variational inference (flipout), and
ariational inference (reparametrization) variants, respectively. To
urther validate our results, we also employ the correlation co-
fficient as a complementary metric. Remarkably, we observe a
ubstantial impro v ement in the correlation coef ficient, with v alues
ncreasing from 0.74 to 0.784, 0.777, and 0.778 for the respective
lgorithms, thus demonstrating the advantage of our proposed
ethod. In addition to robust redshift regression, our algorithm
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Figure 13. Evaluation of the uncertainty for variational inference using the reparameterization estimator. Redshift samples were e v aluated 1000 times, and 
the resulting distribution for some of the known values is shown here. The distribution was fitted with a Gaussian PDF, and the values within 1 σ , 1 σ–2 σ , and 
2 σ–3 σ from the mean were colour-coded as cyan, green, and red, respectively. 
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ddresses the associated uncertainty by providing an estimated 
ange of potential redshift values based on the desired confidence 
evel. Notably, for highest confidence interval (99.7 per cent), the 
redictions of our algorithm encompass the true redshifts for the 
ajority of the samples. This uncertainty quantification feature 

dds significant value to the algorithm’s predictions and helps 
sers to make informed decisions based on their desired confidence 
ev el. Furthermore, we e xtend the application of our algorithm to
redict unknown redshifts in the 4LAC-DR3 catalogue, utilizing 
ariational inferences. This allows us to provide corresponding 
ncertainties alongside the predicted redshifts, enhancing the re- 
iability and applicability of our algorithm in real-world scenar- 
os. 
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